

Making the most of your engineering talent

Reallocate existing engineering talent before trying to hire in a tight market

Today, many companies are facing a shortage of engineers. The historically low unemployment rate further exacerbates the problem. One way companies contend with this shortage is to raise engineer wages. But employers can avoid this wage spiral by first looking at how the engineers they are already paying are deployed. By developing a clear understanding of current engineering skill sets and capabilities across disciplines and aligning it more effectively with actual needs, organizations may be able to avoid hiring new engineers or raising wages.

Why there's an engineering talent shortage

We expect the market for engineers to remain tight. The root causes of this talent shortage can be attributed to several factors:

Shrinking immigration: The engineering workforce in the U.S. has long been home to a significant portion of talented foreign-born workers–about 20 percent to 25 percent according to the American Immigration Council.¹ However, the number of international students has declined by 17 percent in recent years due to changes in visa regulations. Furthermore, while large organizations in the engineering fields have historically been the biggest sponsors of H-1B visas for foreign workers, the cost of sponsorship has increased and use of H-1B visas has declined. U.S. companies rely increasingly on the limited domestic pool of engineering professionals.

Declining interest in engineering studies: Last year, the number of teenage boys interested in an engineering career dropped from 36 percent to 24 percent, while the number of teenage girls interested remained stagnant at just 11 percent.² Some believe that an unfavorable perception of the industry is the root cause of this disinterest.

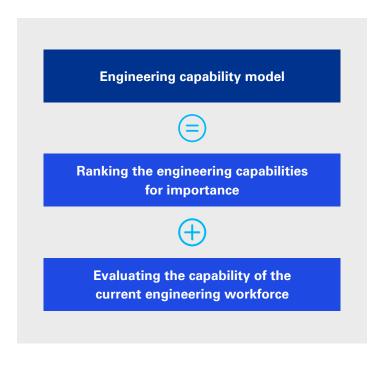
3 Lack of women in engineering: While only 11 percent of teenage girls are interested in engineering careers, the number of female engineering graduates is 24 percent. That is despite the fact that women outnumber men in overall graduate school enrollment.

4 Aging workforce: Every retirement of a senior engineer requires a concerted effort of knowledge transfer to junior engineers. The U.S. Bureau of Labor Statistics forecasts³ a large need for engineering and computer-related talent over the next 10 years due rising needs for technical skills and retirements.

¹ Source: American Immigration Council, American Community Survey Fact Sheet, June 2022
² Source: Government Technology, New Research Shows Declining Interest on STEM, June 2018
³ Source: U.S. Bureau of Labor Statistics, Engineers: Employment, Pay, and Outlook, February 2018

Ease the shortage by properly allocating existing talent

We find that engineering talent is frequently deployed ineffectively. Often, too many engineers are assigned to a project or engineers are misassigned: they are too senior or too junior for their projects. To address these issues, companies should begin thinking about engineering talent not as a human resources problem, but as a supply chain issue to tackle continuously.


Just as car companies think in terms of years when planning their supply of car parts, so too, can engineering organizations think in terms of decades when considering its supply of engineers. For an American motorcycle manufacturer, KPMG determined the strategic importance of each engineering area and assessed internal and external engineering capabilities. We developed a core capability strategy to define engineering needs for a new product development operating model and recommended ways to fill resource requirement gaps, which the company then implemented.

Start with an engineering capability model

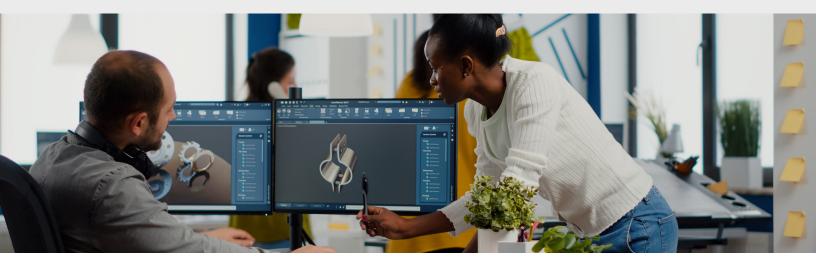
The most effective way to create visibility into the existing skill sets of the engineering talent is to develop an engineering capability model that aligns skill sets with engineering program/product requirements. A capability model helps companies understand the unique skills and proficiencies that make up their workforce.

The model can be an effective part of a talent management program for a given organization and can be particularly useful when organizations are combined. However, when two companies merge, their engineering organizations are sometimes left out of the integration. Without a focused resource allocation schema, there could be engineering programs that are left understaffed or overstaffed because of misalignment of engineering resources. The capability model is important because it assesses engineers' proficiency levels and contextualizes the importance of those skills to a specific organization. Whether it is combining two engineering organizations or improving a standalone engineering organization, a welldesigned capability model can address the issues within an engineering organization, or, in cases of M&A, support the integration of two engineering organizations. Either way, it creates a level of transparency into the existing engineering talent that may reduce the previously thought need for hiring more engineers. It effectively allows you to do more with the same talent base.

The capability model is comprised of two main elements (ranking and evaluating) that together can identify skill and capacity issues.

By identifying skill gaps and capacity issues, this model can help guide resource realignment decisions across multiple sites and business entities.

Engineering capability ranking


The engineering capability ranking should include a scoring mechanism for each technical skill in relation to a product platform, for example: 1 for core skill set; 2 for critical skill set, and 3 for necessary but not critical skill set. The intersection of a product and technical skill defines a capability. Exhibit 1 shows a sample rubric for capability rankings.

Given their experience with successful (and unsuccessful) programs, senior leadership teams should be tasked with ranking the relative importance of each technical skill.

A completed matrix provides the engineering organization with a granular assessment of each capability to aid resource allocation decisions. To complete this exercise, you must first determine how to rank the various capabilities (Exhibit 1). Core capabilities are scarce skills that align with the business strategy. Critical capabilities are important skills that cannot be easily acquired. Finally, necessary capabilities are common skills that are necessary to the overall program.

Exhibit 1. Completed sample capability ranking of an engineering organization

The ranking indicates the importance of skills and their alignment with the company's strategy and core business at a granular level			Product						
			Skill Group A						
			Air inlet	Compressor	Combustion chamber	Turbine	Exhaust nozzle		
	Leadership	Technical leadership	1-Core	3-Necessary	2-Critical		1-Core		
		Project leadership	2-Critical	3-Necessary			1-Core		
	Configuration management	Configuration management	3-Necessary	3-Necessary	3-Necessary	3-Necessary	2-Critical		
		Release and change control	3-Necessary		1-Core		1-Core		
		Software configuration management	1-Core	2-Critical	1-Core	2-Critical	3-Necessary		
ca		Data management	1-Core	2-Critical	1-Core	2-Critical			
Technical		Specifications writing	3-Necessary		1-Core	2-Critical			
Tec		Knowledge retention	3-Necessary		3-Necessary	3-Necessary			
	Systems analysis	Modeling	3-Necessary			1-Core	3-Necessary		
		System design	3-Necessary	1-Core		1-Core			
		Architecture definition	2-Critical	1-Core	2-Critical	1-Core	1-Core		
		System simulation	2-Critical	1-Core	2-Critical	3-Necessary	3-Necessary		
		System algorithm/controls	3-Necessary	3-Necessary	3-Necessary				

2 Engineer proficiency assessment

To complete the capability model, an engineering organization needs to assess the skills of their current workforce to determine which proficiencies are over or underrepresented. Because engineering managers and directors typically evaluate their direct reports across multiple skills (e.g., product, technical, software), their responses can be mapped to a matrix. By mapping across proficiency level and skill, engineering organizations can

Exhibit 2. Sample proficiency ranking scale

Proficiency scale

;	Scale	Name	Description		CI
	0	None	No knowledge relevant to skill		Cl •
	2	Basic	Knowledgeable and requires supervision		Sc •
	3	Skilled	Knowledgeable and requires minimal supervision	\rightarrow	•
	4	Advanced	Proficient; guides and leads others		Fc
	5	Expert	Proficient with recognized expertise; guides and leads others		•

identify capacity issues and adjust their resource allocation strategy accordingly.

Similarly, there must be a rubric in place to rank proficiency levels. An effective scoring system classifies and scores proficiency levels across four levels: basic, skilled, advanced, and expert. Exhibit 2 shows a sample proficiency ranking scale and Exhibit 3 depicts a completed engineer proficiency assessment.

Benefits of methodology

Clear definition of proficiency

- Straightforward assessment
- Enables quicker evaluation

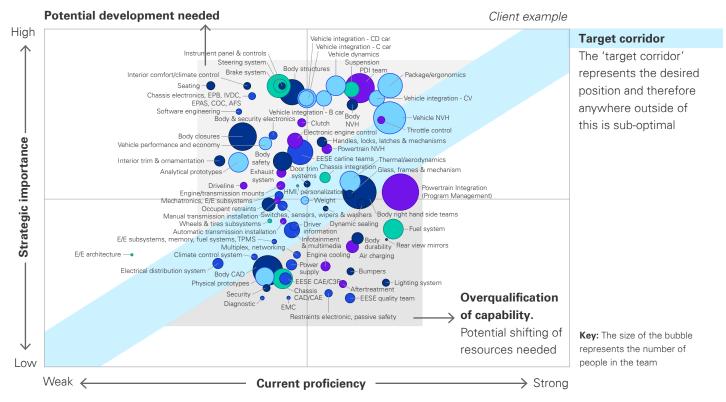
Scoring is independent of capability

- Proficiency and assessment not based on skill specific details
- Avoids the time consuming activity of developing skill specific activities and tasks

Four levels prevents "riding the fence"

- Must make a distinction between "skilled" and "advanced"
- Can't use middle or average score as default

Exhibit 3. Completed sample engineer proficiency assessment


The ranking indicates the importance of skills and their alignment with the company's strategy and core business		Product					
at a granular level			Skill Group A				
			Air inlet	Compressor	Combustion chamber	Turbine	Exhaust nozzle
	Leadership	Technical leadership	15	12	17	16	12
		Project leadership	10		12		
	Configuration management	Configuration management	3	0	9		0
		Release and change control	2	0	7		0
		Software configuration management	1	0	4		0
ca		Data management	0	0	7		0
Technical		Specifications writing	0		6		
Tex		Knowledge retention	0	2	9		2
	Systems analysis	Modeling	1	3	10	2	3
		System design	2	1	4	3	1
		Architecture definition	3	1	3	4	1
		System simulation	3	0	8	4	0
		System algorithm/controls	0	0	2		0

This proficiency assessment for engineers differs from a traditional performance or skill assessment because it 1) Clearly defines the proficiency levels, 2) Contextualizes skills, and 3) Forces the evaluator to distinguish between average performers.

Applying the model

By integrating capability and proficiency, an engineering organization can identify the gaps between their current organizational profile (strengths/weaknesses) and requisite profile to execute their business strategy. To assess the current state of each capability, an organization should look at three factors: the depth of internal expertise, level of internal resources and alignment with the core business. Core capabilities–activities/skills that have the greatest impact on the main business–should also have the highest proficiency. This means that each core capability must be embedded in the organization's long-term strategy and be at the forefront for internal investments. Exhibit 4 provides an illustrative example of how capabilities can be plotted along two dimensions: an engineering group's proficiency and importance of that skill set to the company. Ideally, the two variables should have a positive relationship. Activities that are becoming more important (moving up the y-axis) should have a subsequent increase in proficiency–often in the form of training. Conversely, activities that are becoming less important (moving down the y-axis) should receive fewer internal investments when the organization reallocates their resources.

Exhibit 4: Integrated analysis of capability and proficiency that shows opportunity for improvement outside the "target corridor"

Engineering groups that are outside the target corridor present an opportunity for improvement. Engineering groups in the lower right-hand quadrant represent a workforce that may be over-qualified for the company requirements. As such, those engineers may be better suited shifting to other product groups where their advanced capabilities are needed for product groups where skill sets may be lacking. Engineering groups in the upper left-hand quadrant represent a workforce that may need more advanced capabilities from more seasoned engineers training and developing them. Those more advanced capabilities may come from programs where the seasoned Engineers are utilized less for their capability. The capability model is not used to identify which individuals should stay or go and it is not used to compare proficiency with required skills. It is also not used to assess overqualification of individuals as part of performance management.

Case study: Aerospace & defense producer of Rocket Motors

Two engineering and manufacturing companies with nearly isolated engineering organizations were being integrated. The integration presented opportunities to reassess allocation of engineers the programs and identify a better integrated organization to increase productivity and knowledge sharing.

A two-tier approach was developed: address the standalone opportunities within each organization, then identify the benefits of consolidation using the engineering capability model.

- The standalone opportunities primarily involved right-sizing, while the consolidation opportunities mainly involved resource sharing.
- The company adopted a single operating model, combining the best practices from each organization.

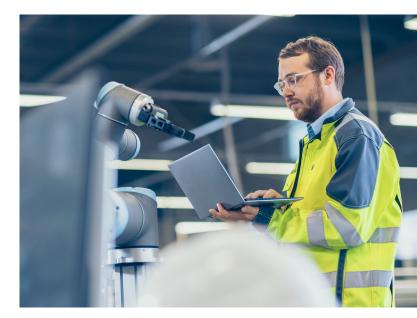
Combining the two engineering organizations produced \$18M in gross savings through standalone and consolidation opportunities focused on cost reduction in labor and external expenses. Managed the engineering skills at the company level and identified and mitigated critical skill issues.

Conclusion

While many engineering organizations view the labor shortage as a roadblock in their five-year plans, the current environment can also provide the opportunity to assess how they use their existing engineering resources more effectively. The consequences of a poor allocation strategy will only be intensified by labor market constraints, which are not likely to ease in the near term. Therefore, we believe that all engineering organizations need to reengineer their internal labor pool to determine overcapacity and skill gaps. In our experience, clients have found success in realigning their existing workforce. The result is that seasoned and skilled engineers upskill their junior counterparts to mitigate the impact of a tight labor market. However, regardless of market conditions, the onus remains on the leaders of engineering organizations to continue providing the right engineers with the right skills and staffing them on the right programs to effectively develop new products that align with the business strategy.

How KPMG can help

Elevate is KPMG's comprehensive performanceassessment framework focused on driving rapid, sustainable EBITDA improvement. We consider how to improve performance across your entire organization and create lasting impact. We ensure value-capture opportunities tie back to your corporate and portfolio strategy, systems and tools, and governance structure.


KPMG brings an extensive suite of capabilities to review the engineering operating model of companies. Our team of engineering specialists is deeply experienced in enhancing the engineering function–including repurposing resources, leveraging supplier capabilities, offshoring engineering support, process efficiencies, and organizational design.

During an engineering assessment, we use our proprietary tools and technologies to consider themes such as

- Reallocating and adjusting engineering resources to align with the company's core capability strategy
- Identifying opportunities where supplier leverage can be increased in the design and development process
- Developing offshoring strategy to move selective engineering support activities to low-cost country provider.
- Designing and executing engineering process efficiencies that drive consistent action throughout the organization

• Designing organizations to increase integration capability and flexibility, with clarified roles and responsibilities.

The KPMG Operations Center of Excellence team can assist management with their entire engineering effectiveness and efficiency as part of a standalone organizational improvement or in a deal environment. This process helps integrate engineering functions across organizations to assist the client with value assessments and future strategic initiatives after the deal closes.

Contact us

Eric Logan

Principal, Deal Advisory & Strategy – Operations Center of Excellence 216-875-8191 ericlogan@kpmg.com

Ash Ateshkadi Managing Director, Deal Advisory & Strategy – Operations Center of Excellence 949-648-9136 ashateshkadi@kpmg.com

Some or all of the services described herein may not be permissible for KPMG audit clients and their affiliates or related entities.

© 2023 KPMG LLP, a Delaware limited liability partnership and a member firm of the KPMG global organization of independent member firms affiliated with KPMG International Limited, a private English company limited by guarantee. All rights reserved.

The KPMG name and logo are trademarks used under license by the independent member firms of the KPMG global organization.

The information contained herein is of a general nature and is not intended to address the circumstances of any particular individual or entity. Although we endeavor to provide accurate and timely information, there can be no guarantee that such information is accurate as of the date it is received or that it will continue to be accurate in the future. No one should act upon such information without appropriate professional advice after a thorough examination of the particular situation.